skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rygel, Michael C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2025
  2. A presumed link between carbon isotopic trends and sea level change features prominently in many studies of epicontinental carbonates. In these shallow marine environments, a combination of basin restriction, burial/oxidation of organic carbon, proximity to terrestrial carbon sources, carbonate mineralogy, and/or meteoric influence can result in δ13Ccarb records that are distinct from that of the open ocean. Because many of these processes are linked to sea level change, it has been argued that sea level might exert a significant and systematic control on the δ13Ccarb records from epicontinental settings. Multiple studies have attempted to document sea level's influence on carbon isotopic trends, but they do so with only limited constraints on sea level change and without objective evaluations of interpreted trends and relationships. We argue that the complex and complicated set of processes influencing carbon isotopic values in epicontinental settings requires a systematic approach to truly address the question of sea level's influence on δ13Ccarb. Only by integrating carbon isotopic records with a detailed sedimentological and sequence stratigraphic framework can we properly track changes in depositional environments and reconstruct the transgressive-regressive history of the rocks. Trends and relationships in these robust datasets can be evaluated with rank correlation tests specifically designed and empirically tested to deal with noisy datasets. In short, we map a possible path forward for systematic testing of the relationship between sea level and δ13Ccarb. 
    more » « less
  3. The Lower Mississippian Lodgepole Formation of Montana and Wyoming records one of the largest positive carbon isotopic excursions of the Phanerozoic. This globally recognized up to 7‰ increase in δ13Ccarb values occurs across the North American Kinderhookian-Osagean boundary (referred to as the K-O excursion). It has been argued to reflect significant organic carbon burial, possibly linked to the onset of the Late Paleozoic Ice Age. Previously proposed correlations between carbon isotopic patterns and the sequence stratigraphic framework within these strata suggests that changes in sea level could have played a significant role in the expression and/or magnitude of the K-O excursion in the Madison Shelf. This study explores the relationship between carbon isotopic values and sea level change at multiple scales. To accomplish this, we provide a comprehensive overview of the sedimentological and stratigraphic framework and address uncertainty about the number of sequences in the Lodgepole Formation. Our results support a three-sequence model for the Lodgepole Formation. Based on the number of sequences and the placement of sequence stratigraphic surfaces, we see little evidence of statistically significant correlation between carbon isotopic trends and the sequence stratigraphic framework. We argue that sea level change was not the primary driving mechanism for carbon isotopic trends in the Madison Shelf, nor the K-O excursion. Instead, we support models that invoke global ocean anoxia and/or destabilization of the global carbon cycle due to land plants. 
    more » « less